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Abstract

We describe a limiter for the discontinuous Galerkin method that retains as high an order as possible, and does not
automatically reduce to first order. The limiter is a generalization of the limiter introduced in [R. Biswas, K. Devine,
J.E. Flaherty, Parallel adaptive finite element methods for conservation laws, Applied Numerical Mathematics 14
(1994) 255–284]. We present the one-dimensional case and extend it to two-dimensional problems on tensor-product
meshes. Computational results for examples with both smooth and discontinuous solutions are shown.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Discontinuous Galerkin (DG) methods are becoming popular due to the ease of increasing the order of
approximation while keeping the stencil local. They combine the ease of finite element approximations in han-
dling complex geometry and adaptation with the shock-capturing abilities of finite volume schemes. One
aspect of these methods, however, that is not yet satisfactory is limiting. When a DG solution is limited, most
methods reduce the solution to first-order accuracy, and much of the advantage of high-order methods is lost.

Some form of nonlinear limiting seems necessary in high-order computations of discontinuous flows
[9,22,10]. We propose a limiter for use with the DG schemes for hyperbolic conservation laws that can limit
gradually, systematically reducing the order of accuracy depending on the behavior of the higher-order solu-
tion derivatives. It does not automatically reduce to first order. We then extend it to two-dimensional prob-
lems on tensor-product meshes. The limiter is a generalization of the moment limiter proposed by Biswas et al.
[3].

The moment limiter itself is a generalization of the second-order accurate minmod limiter of van Leer [22]
to higher orders of approximation. The minmod limiter reduces the slope in a cell if the solution in that cell
exceeds the range of solution averages on neighboring cells. The moment limiter works in a similar way: it
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limits the derivative of order i in a given cell using the derivatives of order i � 1 in neighboring cells. As with
van Leer type limiters, the strength of the moment limiter can be varied.

With DG methods, high-order limiting on general meshes remains an open question both from the theo-
retical and practical points of view. DG methods achieve formal order of accuracy p + 1 by representing
the solution as a polynomial of degree p in each computational cell. In the absence of high-order limiters, alter-
native techniques have been developed to control oscillations in approximations of order p > 1. There are a
number of discontinuity detection strategies where discontinuities are first detected and then a limiter (usually
minmod) is applied only on the elements that are believed to contain a discontinuity. For an overview and
comparison of such strategies, see [18]. Qiu et al. [19] proposed using a high-order WENO reconstruction
instead of the minmod limiter in conjunction with a discontinuity detection strategy. Jaffre et al. [14] intro-
duced the idea of adding artificial viscosity as a stabilization tool. The amount of viscosity is based on the size
of the residual. An implementation of this approach can be found in [12]. More recently an artificial viscosity
term based on h and p was used in [17], also in conjunction with a discontinuity detection strategy and sub-cell
resolution. Modal filtering has been successfully applied to a nodal based DG, see for example [8]. Finally,
Hoteit et al. [13] developed a limiter applicable to piecewise quadratic solutions on rectangular meshes. The
limiter is vertex based: it requires the degree of freedom associated with a vertex to lie between the cell averages
of all elements containing the vertex. A minimization problem needs to be solved on each cell. In contrast to
these approaches, our limiter is closer in spirit to those used in finite volume schemes.

Our limiter is applied progressively, limiting first the high-order terms as needed (e.g. as the solution starts
to steepen). The process continues until either a coefficient is found that does not need to be limited or all
terms are limited. This has two beneficial effects. First, it achieves the highest possible accuracy when some
limiting is necessary. Second, gradual introduction of the limiter seems to avoid artificial limiter-induced steep-
ening – turning sine waves into square waves – that happens with some limiters.

One reason for the absence of high-order limiters might be the lack of analytical tools. The total variation
diminishing (TVD) theory of Harten [10] has been very powerful in constructing second-order limiters in one
space dimension. Harten looks at the total variation of the solution means
TV ¼
X

j

jU jþ1 � Ujj; ð1Þ
which should be non-increasing with time. However, such schemes reduce to first-order near smooth extrema
[11]. This leads to the conclusion that all TVD schemes are at most second-order accurate. However, there are
a couple of interesting constructions for piecewise parabolic solutions of scalar problems in one dimension
[20,16] that are TVD in a different sense. They measure the total variation of the entire function, consisting
of the variation of the solution within mesh cells, and including the jumps between cells. It is interesting to
note that with the minmod limiter, linear DG solutions in one dimension are TVD in means and are not
TVD in this more general sense (see Example 4.1.2).

The limiter that we propose is not total variation diminishing in either sense. In our experiments, the solu-
tions are total variation bounded, but we are unable to prove this analytically. The adaptive character of the
limiter (we stop if a coefficient is found that does not need to be limited) makes it difficult to analyze. We
should note that some commonly used schemes such as ENO/WENO [11,15] and PPM [6] are not provably
TVD, but also seem to be nonlinearly stable.

The outline of the remainder of the paper is as follows. In Section 2 we present the moment limiter in the
one-dimensional case, for both scalar equations and systems of equations. Section 3 extends the limiter to two
space dimensions. Computational results on a variety of test cases in both one and two dimensions are pre-
sented in Section 4 with conclusions following in Section 5. We largely omit a description of local Runge–
Kutta DG schemes. Classical papers of Cockburn and Shu are a good reference [5,4]; details of the specific
implementation used by the author can be found in [7].

2. One-dimensional limiting

In this section, we present the moment limiter, which is a generalization of the minmod limiter. We will
argue that the ith derivative of the numerical solution should not exceed forward and backward differences
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of the (i � 1)st derivative multiplied by a scaling factor. This will lead to a family of limiters, parametrized by a
factor from the interval ½1=ð2ð2i� 1ÞÞ; 1�. One end of the interval is too diffusive and the other end might not
reduce the non-monotonicity enough. However, the solutions remained stable in our experiments for all fac-
tors from the interval. The amount of limiting depends on the order of the derivative with higher derivatives
being allowed bigger variations relative to the neighboring values. We argue that it is safe to reduce the
amount of limiting performed on the higher derivatives since they actually grow at discontinuities, while their
contribution to the solution is small in smooth regions. We recommend the smallest amount of limiting, i.e.
the right end of the interval, and use it in all numerical experiments presented in Section 4. We note that ENO
schemes [11] also allow some oscillations to develop in higher derivatives.

We explain the idea behind the moment limiter in the simplest setting: a scalar equation
ut þ f ðuÞx ¼ 0 ð2Þ

on a uniform mesh in one space dimension. In the DG method, the solution is represented as a polynomial of
degree p in each cell. Let n be a ‘‘computational coordinate’’ variable that ranges linearly from �1 to 1 on cell
½xk; xkþ1�. Within cell k we have
Uk ¼
Xp

i¼0

ck
i P iðnÞ; ð3Þ
where the Pi are the Legendre polynomials [1] normalized so that P ið1Þ ¼ 1, and ck
i are the solution coefficients.

The map between the physical and computational variables is given by
x ¼ 1� n
2

xk þ
1þ n

2
xkþ1: ð4Þ
We limit the solution (3) by limiting its coefficients. Starting with the highest coefficient (at the top level) i ¼ p,
we replace ck

i with
~ck
i ¼ minmodðck

i ;D
þk
i ;D�k

i Þ: ð5Þ

Here
minmodða; b; cÞ ¼
sgnðaÞminðjaj; jbj; jcjÞ if sgnðaÞ ¼ sgnðbÞ ¼ sgnðcÞ
0 otherwise

�
: ð6Þ
The limiter is active if ~ck
i 6¼ ck

i . Formula (5) seeks to contain spurious growth in ck
i ; i ¼ 1; 2; . . . ; p, by compar-

ing them to and limiting them by suitable quantities Dþk
i and D�k

i . Roughly speaking, ci corresponds to the ith
derivative of the solution, so it will be compared to the forward and backward differences of the (i � 1)st deriv-
ative, which are alternative approximations to the ith derivative.

A Taylor series expansion of the solution reveals that in the absence of discontinuities, ck
i ; i ¼ 1; 2; . . . ; p, is

in fact an estimate of oi
xu on cell k up to a scaling factor:
ck
i � CDxioi

xuðfÞ; f 2 ½xk; xkþ1�: ð7Þ

Thus, limiting of ck

i amounts to limiting the approximations of solution derivatives.
Our choice of the forward and backward differences in (5) can be motivated by the following close exam-

ination of the coefficients of the expansion and their relationship to derivatives. First, we compute the ith and
(i � 1)st derivatives of Uk with respect to x. Recall that the coefficient of the leading term anxn of the Legendre
polynomial of order n with the chosen normalization is given by [1]
an ¼
ð2nÞ!
2nn!n!

: ð8Þ
Combining (8) with the mapping (4) gives the following expressions for the indicated derivatives
oi�1U k

oxi�1
¼ 2

Dx

� �i�1

ð2i� 3Þ!!ck
i�1 þ

2

Dx

� �i�1
oi�1

oni�1

Xp

m>i�1

ck
mP mðnÞ ð9Þ
and
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o
iU k

oxi
¼ 2

Dx

� �i

ð2i� 1Þ!!ck
i þ

2

Dx

� �i
o

i

oni

Xp

m>i

ck
mP mðnÞ: ð10Þ
In (9), the terms corresponding to coefficients of order less than i � 1 in x are identically zero, and those of
order greater than i � 1 are collected in the sum. Expression (10) has a similar form. Computing the forward
difference of the o

i�1
x Uk and rearranging the terms gives
oi�1U kþ1

oxi�1
� oi�1U k

oxi�1

� ��
Dx ¼ 2

Dx

� �i ð2i� 3Þ!!
2

ðckþ1
i�1 � ck

i�1Þ þ
2

Dx

� �i
oi�1

oni�1

Xp

m>i�1

1

2
ðckþ1

m � ck
mÞP mðnÞ: ð11Þ
Formulas (10) and (11) are approximations of the same quantity oi
xu. Comparing the ð2=DxÞi order terms in

(10) and (11), and taking into account (7) reveals
ck
i ¼

ckþ1
i�1 � ck

i�1

2ð2i� 1Þ þOðDxiþ1Þ: ð12Þ
A similar relation holds between ck
i and the backward difference of ck

i�1. In a special case when the exact solu-
tion of (2) belongs to the finite element space, i.e. is a polynomial of degree less than or equal to p, (12) is
simplified and there are no higher order terms.

We could have based the limiter for ck
i on (12), for example by setting Dþk

i ¼ ðckþ1
i�1 � ck

i�1Þ=2ð2i� 1Þ and
D�k

i ¼ ðck
i�1 � ck�1

i�1 Þ=2ð2i� 1Þ, but this choice is too diffusive. Instead, we try to find a limiter of the same gen-
eral form
~ck
i ¼ minmodðck

i ; aiðckþ1
i�1 � ck

i�1Þ; aiðck
i�1 � ck�1

i�1 ÞÞ: ð13Þ

Note that ai is a variable depending on the order of the coefficient. We propose the following range for ai
1

2ð2i� 1Þ 6 ai 6 1: ð14Þ
Choosing ai outside of this region resulted in either loss of accuracy or numerical instability. In the experi-
ments presented in Section 4, we used ai = 1, i.e. the mildest limiter possible.

We propose to use the limiter in the following way. Starting at the top level i ¼ p, we replace ck
i with
~ck
i ¼ minmodðck

i ; c
kþ1
i�1 � ck

i�1; c
k
i�1 � ck�1

i�1 Þ: ð15Þ

If ~ck

i ¼ ck
i we stop. Otherwise we limit ck

i�1, continuing until i = 1 or stopping the first time ~ck
i ¼ ck

i . Note that
the limiter (15) is equivalent to allowing the leading term of the ith derivative to be 2ð2i� 1Þ times bigger than
the forward and backward differences of the (i � 1)st derivatives on the neighboring elements.

When p = 1, the limiter (15) becomes the familiar minmod limiter of [5] that compares the slope on k to
twice the forward and backward differences of the solution averages.

Remark 1. It is important both to start limiting from the highest coefficient and to stop when the first
coefficient that does not need to be limited is encountered. This adaptive action of the limiter can be seen in
Example 4.1.1. Using the limiter as an indicator, i.e. either limiting all coefficients if at least one was limited, or
not limiting at all if the limiter did not reach the lowest coefficient, does not work nearly as well. The first
choice results in order reduction and the second in spurious oscillations in the solution. Limiting from the
lowest coefficients up results in flattening of smooth extrema and reduction of accuracy. The moment limiter
seems to identify and limit the exact amount of oscillations developed in the solution.

Remark 2. For nonlinear systems, the limiter must be applied to the characteristic variables. Applying the
limiter to the conserved variables leads to spurious oscillations near discontinuities even with a linear spatial
approximation [4]. The limiting is performed in the following way
ðgLCk
i Þj ¼ minmodððLCk

i Þj; ðLðC
kþ1
i�1 � Ck

i�1ÞÞj; ðLðC
k
i�1 � Ck�1

i�1 ÞÞjÞ; j ¼ 1; 2; . . . ;N ; ð16Þ
where L is a matrix of left eigenvectors of the Jacobian of (2) on cell k evaluated using the Roe average [4],
Ck

i ¼ ðck
i;1; c

k
i;2; . . . ; ck

i;N Þ, and N is the number of equations in the system. The result is mapped back into the
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conserved variables space by multiplication with the matrix of right eigenvectors. In this notation, ðLCk
i Þj is

the ith coefficient of the expansion of the jth characteristic variable in the space of basis functions. Character-
istic variables must be limited independently from one another: we stop limiting variable j if ðgLCk

i Þj ¼ ðLCk
i Þj

for some i, but might have to continue to limit other characteristic variables. Presumably the same could be
done for primitive variables, but we have not yet investigated this.

Remark 3. As a consequence of limiting of characteristic variables, some negative pressure values that are
produced by the scheme might not be corrected by the limiter. Should this occur, we limit the coefficients
corresponding to linear terms according to (5) and set higher order coefficients to zero. If this is not enough to
eliminate negative pressure values, all coefficients except for ck

0 are set to zero.
3. Two-dimensional limiting

In this section we extend the moment limiter to tensor-product meshes in two space dimensions. This is less
straightforward than one might think, because the x and y directions are coupled in the expansion of the solu-
tion. We use both directions to limit each coefficient, and we adjust the constant used in the limiting as well.
The justification is outlined below.

We consider DG solutions of a two-dimensional scalar problem of the form (2) on a uniform rectangular
grid with grid spacing Dx and Dy. We map each grid cell to a computational cell ½�1; 1� � ½�1; 1� with a map of
the form (4) in both the x and y directions. The computational variables are now n and g. We construct a ten-
sor-product basis using the Legendre polynomials. The basis functions are normalized so that kP iP jkL2 ¼ 1 on
the computational cell. The solution on cell k;m in terms of this basis is given by
Uk;m ¼
Xp

i¼0;j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2iþ 1Þð2jþ 1Þ

p
2

ck;m
i;j P iðnÞP jðgÞ: ð17Þ
As in one space dimension, we seek to limit solution derivatives. First, we differentiate Uk;m i times in x and j

times in y when i; j are not simultaneously equal to zero to get
o
iþjUk;m

oxioyj
¼ 2

Dx

� �i
2

Dy

� �j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2iþ 1Þð2jþ 1Þ

p
2

ð2i� 1Þ!!ð2j� 1Þ!!ck;m
i;j

"
þ o

iþj

oni
ogj

Xp

u>i;v>j

ck;m
u;v P uðnÞP vðgÞ

#
: ð18Þ
We limit ck;m
i;j using forward and backward differences of lower derivatives of U k;m. Two derivatives can serve

this purpose: oi
xo

j�1
y U and oi�1

x oj
yU . After some algebra similar to the one-dimensional case, we find
oiþj�1U k;m

oxi oyj�1
¼ 2

Dx

� �i
2

Dy

� �j�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2iþ 1Þð2j� 1Þ

p
2

ð2i� 1Þ!!ð2j� 3Þ!!ck;m
i;j�1 þ

oiþj�1

oniogj�1

Xp

u>i;vPj

ck;m
u;v P uðnÞP vðgÞ

" #
;

j > 0; ð19Þ
and
oiþj�1U k;m

oxi�1 oyj
¼ 2

Dx

� �i�1
2

Dy

� �j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2i� 1Þð2jþ 1Þ

p
2

ð2i� 3Þ!!ð2j� 1Þ!!ck;m
i�1;j þ

oiþj�1

oni ogj�1

Xp

uPi;v>j

ck;m
u;v P uðnÞP vðgÞ

" #
;

i > 0: ð20Þ
Computing the forward differences of oi�1
x oj

yU and oi
x oj�1

y U in the x and y directions, respectively, and com-
paring them to the leading term of (18) results in
ck;m
i;j ¼

ckþ1;m
i�1;j � ck;m

i�1;j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4i2 � 1
p þOðDxiþ1Dyiþ1Þ ð21aÞ
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and
ck;m
i;j ¼

ck;mþ1
i;j�1 � ck;m

i;j�1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4j2 � 1

p þOðDxiþ1Dyiþ1Þ: ð21bÞ
As in one space dimension, (21a) and (21b) are exact equalities if the solution actually belongs to the space
spanned by the basis. We use both to limit ck;m

i;j but with different coefficients
~ck;m
i;j ¼ minmod ck;m

i;j ; ajðck;mþ1
i;j�1 � ck;m

i;j�1Þ; ajðck;m
i;j�1 � ck;m�1

i;j�1 Þ; aiðckþ1;m
i�1;j � ck;m

i�1;jÞ; aiðck;m
i�1;j � ck�1;m

i�1;j Þ
� �

: ð22Þ
For ck;m
0;j and ck;m

i;0 , i; j ¼ 1; 2; . . . ; p, the limiter (22) has only three terms. The coefficients ai and aj are defined by
using the same reasoning as the one-dimensional case. We do not allow ck;m

i;j to exceed 2ð2i� 1Þ times the lower
derivative in the x direction and 2ð2j� 1Þ times the lower derivative in the y direction. This and (21) result in
the following choice of a
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 � 1
p 6 an 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1

2nþ 1

r
: ð23Þ
Note that the difference in the factors between the one- and two-dimensional cases are due to the difference in
normalization of the basis functions.

The least diffusive choice of a, the one corresponding to the right end of the interval (23), is used in all com-
putations presented in Section 4. As in the one-dimensional case, the limiter is applied adaptively starting with
the highest coefficient cp;p and continuing to lower ones if necessary. The limiting is performed by applying (22)
to consecutively lower terms of (17) until a coefficient ci;i or a pair of coefficients ci;j and cj;i are found that are
not changed by the limiter. For coefficients ci;j, i 6¼ j, we require a symmetric pair ci;j and cj;i not be changed by
the limiter in order to assume that no further limiting is necessary. More specifically, the order of limiting is
the following. First, any coefficient with a subscript p is limited, and within those, they are limited from highest
to lowest. For example, the highest coefficient cp;p is examined. If it does not need limiting, the procedure
stops. If it does, the pair of coefficients cp;p�1 and cp�1;p is examined. If they do not need limiting, the procedure
stops, otherwise the pair cp;p�2 and cp�2;p is examined. When all coefficients with a p are finished, those with at
least a p � 1 subscript that have not yet been examined go next. The following describes the ordering of ele-
ments for limiting from the highest to the lowest:
cp;p; cp;p�1 and cp�1;p; cp;p�2 and cp�2;p; . . . ; cp;0 and c0;p;

cp�1;p�1; cp�1;p�2 and cp�2;p�1; cp�1;p�3 and cp�3;p�1; . . . ; cp�1;0 and c0;p�1;

. . .

c1;1; c1;0 and c0;1:

ð24Þ
Detailed formulas illustrating the use of limiter (22) for a quadratic approximation are given in Appendix A.

4. Numerical examples

This section shows the behavior of the limiter on a variety of test problems. Examples with both smooth
solutions and discontinuous solutions, and in one and two space dimensions, are presented. The implementa-
tion of the limiter is straightforward.

4.1. One-dimensional examples

4.1.1. Linear advection

We consider the linear initial value problem
ut þ ux ¼ 0; �1 6 x < 1; t > 0;

uðx; 0Þ ¼ u0ðxÞ;
uðx;�1Þ ¼ uðx; 1Þ;

ð25Þ
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with
Table
L1 erro

N

16
32
64

128
256

No lim
u0ðxÞ ¼ sin px: ð26Þ

The exact solution of this problem is smooth and does not require limiting. To measure the loss of accuracy
inflicted by the moment limiter, we solve the problem with and without the limiter and compare the results.
We present errors �1 in the L1 norm at t = 2 after one period on uniform meshes having 16, 32, 64, 128, and
256 elements in Table 1 (no limiter) and Table 2 (moment limiter) for p ranging from 1 to 4. Even on this
smooth example, the limiter decreases the accuracy quite a bit. This is expected, but it is no worse than a cor-
responding finite volume scheme, see for example [2]. Also note that the convergence rate is preserved. (In fact,
since the coarsest grid does so poorly the rate appears higher than expected, but would settle back down).
Next, we advect the initial profile further in time to t = 100 using the minmod and moment limiters and plot
the solutions in Fig. 1 for p = 4 on a 32 element mesh with 11 points per element. There is no visual change in
the shape of the solution obtained with the moment limiter while the minmod limiter transforms the sinusoidal
wave into a square pulse. The L1 errors are 3.85e�07 and 2.49e�01, respectively. This indicates that the mo-
ment limiter might be especially beneficial for problems requiring long-time simulations.

Next, we solve (25) with the initial conditions [15]
u0ðxÞ ¼

1
6
ðGðx; b; z� dÞ þ Gðx; b; zþ dÞ þ 4Gðx; b; zÞÞ; �0:8 6 x 6 �0:6;

1; �0:4 6 x 6 �0:2;

1� j10ðx� 0:1Þj; 0 6 x 6 0:2;
1
6
ðF ðx; a; a� dÞ þ F ðx; a; aþ dÞ þ 4F ðx; a; zÞÞ; 0:4 6 x 6 0:6;

0 otherwise;

8>>>>>><>>>>>>:
ð27aÞ

Gðx; b; zÞ ¼ e�bðx�zÞ2 ; ð27bÞ

F ðx; a; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð1� a2ðx� aÞ2; 0Þ

q
; ð27cÞ
where a ¼ 0:5, z ¼ �0:7, d ¼ 0:005, a = 10, and b ¼ log 2

36d2. The initial profile consists of a combination of Gaus-
sians, a square pulse, a sharp triangle, and a combination of half-ellipses. We solve the problem on a 200 ele-
ment uniform mesh with p ¼ 1; 2; 3; 4 using the moment limiter. The solutions are plotted in Fig. 2 with 11
points per element. We observe that the solution extrema are better resolved with higher p. The rectangular
pulse is captured better as well. The action of the limiter on the solution is plotted beneath each plot. In this
figure, a dot corresponds to the highest coefficient not limited (one dot per element). For example, a dot at
‘‘three’’ means that the third and lower coefficients were not limited on the element; only coefficients higher
than 3 would be limited. We observe that the limiter acts on the solution adaptively and does minimal limiting
in smooth regions. Almost all coefficients are limited in the regions of near constant state since higher coeffi-
cients are on the order of machine precision there.

Next, we plot the exact and numerical derivatives of the solution computed with p = 3 on the 200 element
mesh in Fig. 3. The numerical derivatives were computed and plotted locally on each element by differentiating
(3). At discontinuities, the ‘‘exact’’ derivatives in Fig. 3 were plotted using one-sided differentiation. There is a
good agreement between the exact and computed derivatives for the Gaussian. In approximating the pulse
1
rs �1 and convergence rates r for the sine wave

p = 1 p = 2 p = 3 p = 4

�1 r �1 r �1 r �1 r

2.18e�02 – 3.15e�04 – 6.67e�06 – 1.43e�07 –
5.42e�03 2.01 3.91e�05 3.01 4.12e�07 4.02 4.46e�09 5.01
1.35e�03 2.01 4.89e�06 3.00 2.56e�08 4.01 1.39e�10 5.00
3.37e�04 2.00 6.11e�07 3.00 1.59e�09 4.00 4.35e�12 5.00
8.45e�05 2.00 7.63e�08 3.00 9.99e�11 4.00 1.36e�13 4.99

iter.



Table 2
L1 errors �1 and convergence rates r for the sine wave

N p = 1 p = 2 p = 3 p = 4

�1 r �1 r �1 r �1 r

16 1.22e�01 – 1.95e�03 – 6.71e�05 – 1.92e�06 –
32 2.65e�02 2.21 1.81e�04 3.43 2.95e�06 4.51 4.38e�08 5.45
64 5.64e�03 2.23 1.78e�05 3.35 1.35e�07 4.45 9.89e�10 5.47

128 1.17e�03 2.27 1.74e�06 3.35 6.13e�09 4.46 2.20e�11 5.48
256 2.45e�04 2.25 1.79e�07 3.28 2.92e�10 4.39 5.02e�13 5.45

Moment limiter.
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Fig. 1. Linear advection (25) and (26) with p = 4 on a 32 element uniform mesh; t = 100. Left: the exact and numerical solutions are
indistinguishable with the moment limiter. Right: solid line – exact solution, plus signs – numerical solution.
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(the second shape from the left), we see two delta-function-like shapes, then four spikes and then six. The lim-
iter does not cut the accuracy to first order, rather the numerical derivatives are a good approximation for the
delta function. We also note that the derivatives are not approximated monotonically. This is actually the case
even for linear approximation, as can be seen in Fig. 4.

4.1.2. Burgers equation
In this example we study how the moment limiter affects the total variation of the solution and its coeffi-

cients when solving the Burgers equation
ut þ ðu2=2Þx ¼ 0; �1 6 x < 1; t > 0;

uðx; 0Þ ¼ 1þ sin px
2

;

uð�1; tÞ ¼ uð1; tÞ:

ð28Þ
The solution of this problem forms a shock at t ¼ 2=p that moves to the right. The evolution of the shock in
time is shown in Fig. 5, right. We solve the problem on a 32 element uniform mesh with p = 1 and p = 2 and
plot the total variation in means (TVM) and the real total variation (TV) of the computed solution in Fig. 6.
The real total variation is computed as a sum of the solution variation within each cell plus the solution jumps
between cells. The total variation in means is given by (1). The exact total variation remains constant until
t = 1 and monotonically decreases after that (Fig. 5, right). The minmod limiter (p = 1) results in a diminish-
ing TVM as expected. This can be seen in Fig. 5, left, as a flattened local maximum. The moment limiter
(p = 2) retains a near constant TVM until the shock forms. However, the TV with both p = 1 and p = 2 starts
noticeably growing as the solution steepens into a shock. The growth in the TV is roughly 15% and 30% for
p = 1 and p = 2, respectively. The oscillatory structure of the TV plot is a result of the solution profile moving
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Fig. 2. Solutions of linear advection problem (25), (27) at t ¼ 8:0, N = 200, p ¼ 1; 2; 3; 4 from left to right and from top to bottom. Solid
line – exact solution, crosses – numerical solution. The moment limiter’s action is shown beneath each plot. A dot corresponds to the
highest coefficient not limited.
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through the grid, because TV depends on the positions of solution peaks relative to the mesh. The period of
the oscillations is a=Dx, where a is the wave speed. Eleven peaks after t ¼ 2=p in Fig. 6 correspond to 11 grid
cells through which the shock moved. A similar phenomenon is observed with the minmod limiter. The min-
mod enforces the TVD property by suppressing the upward movement in each period, which results in the
staircasing pattern in Fig. 6, left.
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Next, we solve (28) on the same mesh with p = 3, compute the following quantities:
TV i�1 ¼
X

j

jcj
i j; i ¼ 1; 2; 3; ð29Þ
at every timestep, and plot them in Fig. 7 using a log scale. Recall that the ci are approximations to the solution
derivatives times a scaling factor involving Dxi. We notice that the scales remain clearly separated even after the
shock has formed. TV0 is an approximation to the total variation, which decays with time. By analogy, TV1 and
TV2 can be viewed as approximations of the total variation of the first and second derivatives. They start to
grow earlier and grow faster than TV0, with the third coefficients growing faster than the second ones. This con-
firms our hypothesis that oscillations first appear in higher derivatives and then propagate into lower ones.

4.1.3. Blast waves

We consider the Euler equations ut þ fðuÞx ¼ 0 with
u ¼ ðq; qq;EÞT; fðuÞ ¼ quþ ð0; P ; qP ÞT; ð30aÞ

and an equation of state
P ¼ ðc� 1Þ E � 1

2
qq2

� �
: ð30bÞ
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Here, q is density, q velocity, P pressure, and E energy. We solve the problem subject to the initial conditions
ðq; q; PÞðx; 0Þ ¼
ð1; 0; 1000Þ; 0 6 x < 0:1;

ð1; 0; 0:01Þ; 0:1 6 x < 0:9;

ð1; 0; 100Þ; 0:9 6 x 6 1;

8><>: ð31Þ
on the interval ½0; 1�. Reflecting boundary conditions are imposed at the end points. The problem models inter-
action of two blast waves and was studied extensively in [23]. We solve the problem on 200 and 400 element
meshes with linear and quadratic approximation. The results at t ¼ 0:38 are reported in Fig. 8. The numerical
solutions are compared with a solution obtained with p = 1 on a 3000 element mesh that is referred to as ‘‘ex-
act’’ in Fig. 8. Although the structure of the solution is quite complex, there are no smooth regions where the
advantages of a high-order scheme could be made apparent. The purpose of this example, thus, is to show that
a high-order DG with the moment limiter results in accurate, stable, overshoot-free solutions for this difficult
problem involving multiple interactions of strong shocks and rarefactions. Even for this case we observe that
the quadratic approximation is more accurate, and the shocks and contact regions are better resolved on both
meshes.

4.1.4. Shock–entropy interaction

Consider the Euler equations (30) subject to the initial data [21]
ðq; q; PÞðx; 0Þ ¼
ð3:857143;�0:920279; 10:33333Þ; x 6 0;

ð1þ 0:2 sinð5xÞ;�3:549648; 1:00000Þ; 0 < x < 10;

ð1:0000;�3:549648; 1:00000Þ; x P 10:

8><>: ð32Þ
This example involves the interaction of a stationary shock at x = 0 with a leftward-moving flow having a
sinusoidal density variation. As the density perturbation passes through the shock, it produces oscillations
developing into shocks of smaller amplitude. A poor limiting strategy would damp the oscillations and, thus,
the aim is to avoid this. In Fig. 9 we present solutions at t ¼ 2:0 computed on a uniform mesh with elements of
size 0.04 with p = 1 and p = 2. The high-frequencies behind the shock are better resolved by the quadratic
approximation. This indicates that the DG might be competitive for problems involving interactions of shocks
and fine structures.

4.2. Two-dimensional examples

4.2.1. Linear advection

We consider the linear advection problem on a square X ¼ ð�1; 1Þ � ð�1; 1Þ



0

1

2

3

4

5

6

7

0  0.2  0.4  0.6  0.8 1
0

1

2

3

4

5

6

7

0  0.2  0.4  0.6  0.8 1

0

1

2

3

4

5

6

7

0  0.2  0.4  0.6  0.8 1
0

1

2

3

4

5

6

7

0  0.2  0.4  0.6  0.8 1

Fig. 8. Interaction of two blast waves (30), (31) at t ¼ 0:38, computed with p = 1 (left) and p = 2 (right) on N = 200 and N = 400 (top and
bottom). Solid line – exact solution, dashed line – numerical solution.

 0.5

1

 1.5

2

 2.5

3

 3.5

4

 4.5

5

-6 -4 -2 0 2 4

exact
numerical

 625

1

 125

2 2253 3254

 425

5-6-4

-2

0

24

exact

numerical

Fig. 9. Entropy shock interaction(30), (32)att= 2, computed withp= 1 (left) andp= 2 (right) withDx¼0:04. The ‘‘exact’’ solution wasobtain
ut þ a � ru ¼ 0; t > 0;

uðx; y; 0Þ ¼ u0ðx; yÞ:
ð33Þ
First, we solve (33) with sinusoidal initial data
u0ðx; y; 0Þ ¼ sin pðx� 2yÞ; ð34Þ
ed on a fine mesh withDx¼0:01.L. Krivodonova / Journal of Computational Physics 226 (2007) 879–896891



Table 3
L1 errors �1 and convergence rates r for the sinusoidal wave

N Limiter No Limiter
p = 1

�1 r �1 r

16� 16 1.677712e�01 – 1.179655e�01 –
32� 32 2.510205e�02 2.74 1.946301e�02 2.60
64� 64 5.148220e�03 2.29 4.697913e�03 2.05

p = 2

16� 16 4.691721e�03 – 4.6849e�03 –
32� 32 5.7393e�04 3.03 5.7393e�04 3.03
64� 64 7.1462e�05 3.01 7.1462e�05 3.01
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and a ¼ ð3; 1Þ. Periodic boundary conditions are imposed. The initial conditions and the velocity a are chosen
so that the isolines of the solution and the direction of the flow do not coincide with the orientation of the
mesh. We solve this problem on a sequence of Cartesian meshes: 16� 16, 32 · 32, and 64� 64 with
p ¼ 1; 2; 3; 4. The exact errors in the L1 norm for limited and unlimited solutions are reported in Table 3.
For p > 1 the errors in limited and unlimited solutions are virtually the same for all but the coarsest mesh
and to save space we do not report them here.

Next, we consider a profile consisting of a cone and a square pulse rotating clock-wise around the origin
with velocity a ¼ ð2py;�2pxÞ. The initial conditions are given by
u0ðx; y; 0Þ ¼
cos2ð2prÞ; r <¼ 0:25;

1; 0:1 6 x 6 0:6 &&� 0:25 6 y 6 0:25;

0; otherwise;

8><>: ð35Þ
where r ¼ ðxþ 0:5Þ2 þ y2. We set u = 0 on the boundaries. The solutions obtained on an 80 by 80 element
mesh are shown in Fig. 10 with 11 isolines. The solutions are reasonably symmetric with no visible overshoots.
The cross-section of the solutions along the line y = 0 is plotted in Fig. 11. The peak of the cone is still equal to
one for the quadratic approximation but is only 0.82 for the linear approximation.
Fig. 10. Rotating cone and square pulse, t = 1, p = 1 (left) and p = 2 (right).
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4.2.2. Double mach reflection

We consider the reflection of a Mach 10 planar shock by a wedge having a half-angle of 30�. The detailed
set-up and analysis of the problem can be found in [23]. The problem is solved on a uniform mesh with spac-
ings Dx ¼ Dy ¼ 1=240 on the ½0; 4� � ½0; 1� domain. Initially, the shock is located at x ¼ 1=6 and forms a 60�
angle with x axis. Reflecting boundary conditions are imposed on the lower boundary starting at x ¼ 1=6; val-
ues corresponding to the exact motion of the Mach 10 shock are used on the rest of the boundaries. The den-
sity contours with p = 1 and p = 2 are plotted in Figs. 12 and 13. The fine structures of the solution are better
resolved with quadratic approximation. In particular, the instability of the contact is better captured with
Fig. 12. Double Mach reflection on 240 by 960 mesh. Density, 30 isolines, p = 1 (top) and p = 2 (bottom).



Fig. 13. Double Mach reflection on 240 by 960 mesh. Density (zoom), 30 isolines, p = 1 (left) and p = 2 (right).

Fig. 14. Double Mach reflection on 240 by 960 mesh, p = 2, moment limiter. The elements where all coefficients were limited are marked.
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p = 2. The action of the limiter after the final time step was performed is shown in Fig. 14. The elements where
all coefficients were limited are marked. The full action of the limiter is mainly restricted to the shock regions.
The limiter is also activated in the region behind the incident shock where the solution has near constant
values.

5. Conclusions

We have described the moment limiter for discontinuous Galerkin methods that can limit a high-order
approximation without reducing it to first order. The limiter was developed in one space dimension, and
extended to two dimensions for tensor-product meshes. The most important next step is to try to extend
the limiter to unstructured triangular meshes. It would also be interesting to test these ideas on discontinuous
Galerkin methods with different basis functions, and derive the appropriate scalings for those cases.
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Appendix A

For completeness, we include the formulas for limiting a quadratic approximation using the Legendre ten-
sor-product basis functions. The second order basis is given by
c0;0 ¼
1

2
; c1;0 ¼

ffiffiffi
3
p

n
2

; c0;1 ¼
ffiffiffi
3
p

g
2

; c1;1 ¼
3ng

2
;

c2;0 ¼
ffiffiffi
5
p
ð3n2 � 1Þ

2
; c0;2 ¼

ffiffiffi
5
p
ð3g2 � 1Þ

2
; c2;1 ¼

ffiffiffiffiffi
15
p
ð3n2 � 1Þg

2
;

c1;2 ¼
ffiffiffiffiffi
15
p
ð3g2 � 1Þn

2
; c2;2 ¼

5ð3n2 � 1Þð3g2 � 1Þ
2

:

ð36Þ
We limit the solution on mesh cell ðk;mÞ using the following formulas that correspond to formula (22) in the
paper,
~ck;m
2;2 ¼ minmod ck;m

2;2 ;
ck;mþ1

2;1 � ck;m
2;1ffiffiffiffiffi

15
p ;

ck;m
2;1 � ck;m�1

2;1ffiffiffiffiffi
15
p ;

ckþ1;m
1;2 � ck;m

1;2ffiffiffiffiffi
15
p ;

ck;m
1;2 � ck�1;m

1;2ffiffiffiffiffi
15
p

 !

~ck;m
1;2 ¼ minmod ck;m

1;2 ;
ck;mþ1

1;1 � ck;m
1;1ffiffiffiffiffi

15
p ;

ck;m
1;1 � ck;m�1

1;1ffiffiffiffiffi
15
p ;

ckþ1;m
0;2 � ck;m

0;2ffiffiffi
3
p ;

ck;m
0;2 � ck�1;m

0;2ffiffiffi
3
p

 !

~ck;m
2;1 ¼ minmod ck;m

2;1 ;
ck;mþ1

2;0 � ck;m
2;0ffiffiffi

3
p ;

ck;m
2;0 � ck;m�1

2;0ffiffiffi
3
p ;

ckþ1;m
1;1 � ck;m

1;1ffiffiffiffiffi
15
p ;

ck;m
1;1 � ck�1;m

1;1ffiffiffiffiffi
15
p

 !

~ck;m
0;2 ¼ minmod ck;m

0;2 ;
ck;mþ1

0;1 � ck;m
0;1ffiffiffiffiffi

15
p ;

ck;m
0;1 � ck;m�1

0;1ffiffiffiffiffi
15
p

 !

~ck;m
2;0 ¼ minmod ck;m

2;0 ;
ckþ1;m

1;0 � ck;m
1;0ffiffiffiffiffi

15
p ;

ck;m
1;0 � ck�1;m

1;0ffiffiffiffiffi
15
p

 !

~ck;m
1;1 ¼ minmod ck;m

1;1 ;
ck;mþ1

1;0 � ck;m
1;0ffiffiffi

3
p ;

ck;m
1;0 � ck;m�1

1;0ffiffiffi
3
p ;

ckþ1;m
0;1 � ck;m

0;1ffiffiffi
3
p ;

ck;m
0;1 � ck�1;m

0;1ffiffiffi
3
p

 !

~ck;m
0;1 ¼ minmod ck;m

0;1 ;
ck;mþ1

0;0 � ck;m
0;0ffiffiffi

3
p ;

ck;m
0;0 � ck;m�1

0;0ffiffiffi
3
p

 !

~ck;m
1;0 ¼ minmod ck;m

1;0 ;
ckþ1;m

0;0 � ck;m
0;0ffiffiffi

3
p ;

ck;m
0;0 � ck�1;m

0;0ffiffiffi
3
p

 !
:

ð37Þ
Limiting is performed in the following manner:

� limit ~ck;m
2;2 , if not changed, stop.

� limit ~ck;m
1;2 and ~ck;m

2;1 , if both not changed, stop.
� limit ~ck;m

0;2 and ~ck;m
2;0 , if both not changed, stop.

� limit ~ck;m
1;1 , if not changed, stop.

� limit ~ck;m
0;1 and ~ck;m

1;0 .
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