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Abstract

We describe a limiter for the discontinuous Galerkin method that retains as high an order as possible, and does not
automatically reduce to first order. The limiter is a generalization of the limiter introduced in [R. Biswas, K. Devine,
J.E. Flaherty, Parallel adaptive finite element methods for conservation laws, Applied Numerical Mathematics 14
(1994) 255-284]. We present the one-dimensional case and extend it to two-dimensional problems on tensor-product
meshes. Computational results for examples with both smooth and discontinuous solutions are shown.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Discontinuous Galerkin (DG) methods are becoming popular due to the ease of increasing the order of
approximation while keeping the stencil local. They combine the ease of finite element approximations in han-
dling complex geometry and adaptation with the shock-capturing abilities of finite volume schemes. One
aspect of these methods, however, that is not yet satisfactory is limiting. When a DG solution is limited, most
methods reduce the solution to first-order accuracy, and much of the advantage of high-order methods is lost.

Some form of nonlinear limiting seems necessary in high-order computations of discontinuous flows
[9,22,10]. We propose a limiter for use with the DG schemes for hyperbolic conservation laws that can limit
gradually, systematically reducing the order of accuracy depending on the behavior of the higher-order solu-
tion derivatives. It does not automatically reduce to first order. We then extend it to two-dimensional prob-
lems on tensor-product meshes. The limiter is a generalization of the moment limiter proposed by Biswas et al.
[3].

The moment limiter itself is a generalization of the second-order accurate minmod limiter of van Leer [22]
to higher orders of approximation. The minmod limiter reduces the slope in a cell if the solution in that cell
exceeds the range of solution averages on neighboring cells. The moment limiter works in a similar way: it
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limits the derivative of order 7 in a given cell using the derivatives of order i — 1 in neighboring cells. As with
van Leer type limiters, the strength of the moment limiter can be varied.

With DG methods, high-order limiting on general meshes remains an open question both from the theo-
retical and practical points of view. DG methods achieve formal order of accuracy p + 1 by representing
the solution as a polynomial of degree p in each computational cell. In the absence of high-order limiters, alter-
native techniques have been developed to control oscillations in approximations of order p > 1. There are a
number of discontinuity detection strategies where discontinuities are first detected and then a limiter (usually
minmod) is applied only on the elements that are believed to contain a discontinuity. For an overview and
comparison of such strategies, see [18]. Qiu et al. [19] proposed using a high-order WENO reconstruction
instead of the minmod limiter in conjunction with a discontinuity detection strategy. Jaffre et al. [14] intro-
duced the idea of adding artificial viscosity as a stabilization tool. The amount of viscosity is based on the size
of the residual. An implementation of this approach can be found in [12]. More recently an artificial viscosity
term based on / and p was used in [17], also in conjunction with a discontinuity detection strategy and sub-cell
resolution. Modal filtering has been successfully applied to a nodal based DG, see for example [8]. Finally,
Hoteit et al. [13] developed a limiter applicable to piecewise quadratic solutions on rectangular meshes. The
limiter is vertex based: it requires the degree of freedom associated with a vertex to lie between the cell averages
of all elements containing the vertex. A minimization problem needs to be solved on each cell. In contrast to
these approaches, our limiter is closer in spirit to those used in finite volume schemes.

Our limiter is applied progressively, limiting first the high-order terms as needed (e.g. as the solution starts
to steepen). The process continues until either a coefficient is found that does not need to be limited or all
terms are limited. This has two beneficial effects. First, it achieves the highest possible accuracy when some
limiting is necessary. Second, gradual introduction of the limiter seems to avoid artificial limiter-induced steep-
ening — turning sine waves into square waves — that happens with some limiters.

One reason for the absence of high-order limiters might be the lack of analytical tools. The total variation
diminishing (TVD) theory of Harten [10] has been very powerful in constructing second-order limiters in one
space dimension. Harten looks at the total variation of the solution means

=3 U -Tl (1)
J

which should be non-increasing with time. However, such schemes reduce to first-order near smooth extrema
[11]. This leads to the conclusion that all TVD schemes are at most second-order accurate. However, there are
a couple of interesting constructions for piecewise parabolic solutions of scalar problems in one dimension
[20,16] that are TVD in a different sense. They measure the total variation of the entire function, consisting
of the variation of the solution within mesh cells, and including the jumps between cells. It is interesting to
note that with the minmod limiter, linear DG solutions in one dimension are TVD in means and are not
TVD in this more general sense (see Example 4.1.2).

The limiter that we propose is not total variation diminishing in either sense. In our experiments, the solu-
tions are total variation bounded, but we are unable to prove this analytically. The adaptive character of the
limiter (we stop if a coefficient is found that does not need to be limited) makes it difficult to analyze. We
should note that some commonly used schemes such as ENO/WENO [11,15] and PPM [6] are not provably
TVD, but also seem to be nonlinearly stable.

The outline of the remainder of the paper is as follows. In Section 2 we present the moment limiter in the
one-dimensional case, for both scalar equations and systems of equations. Section 3 extends the limiter to two
space dimensions. Computational results on a variety of test cases in both one and two dimensions are pre-
sented in Section 4 with conclusions following in Section 5. We largely omit a description of local Runge—
Kutta DG schemes. Classical papers of Cockburn and Shu are a good reference [5,4]; details of the specific
implementation used by the author can be found in [7].

2. One-dimensional limiting

In this section, we present the moment limiter, which is a generalization of the minmod limiter. We will
argue that the ith derivative of the numerical solution should not exceed forward and backward differences
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of the (i — 1)st derivative multiplied by a scaling factor. This will lead to a family of limiters, parametrized by a
factor from the interval [1/(2(2i — 1)), 1]. One end of the interval is too diffusive and the other end might not
reduce the non-monotonicity enough. However, the solutions remained stable in our experiments for all fac-
tors from the interval. The amount of limiting depends on the order of the derivative with higher derivatives
being allowed bigger variations relative to the neighboring values. We argue that it is safe to reduce the
amount of limiting performed on the higher derivatives since they actually grow at discontinuities, while their
contribution to the solution is small in smooth regions. We recommend the smallest amount of limiting, i.e.
the right end of the interval, and use it in all numerical experiments presented in Section 4. We note that ENO
schemes [11] also allow some oscillations to develop in higher derivatives.
We explain the idea behind the moment limiter in the simplest setting: a scalar equation

u+ f(u), =0 (2)

on a uniform mesh in one space dimension. In the DG method, the solution is represented as a polynomial of
degree p in each cell. Let £ be a “computational coordinate” variable that ranges linearly from —1 to 1 on cell
[Xt, x5+1]. Within cell k£ we have

Uy = icfpi(é)’ 3)

where the P; are the Legendre polynomials [1]normalized so that P;(1) = 1, and ¢* are the solution coefficients.
The map between the physical and computational variables is given by
1-¢ 14+¢

5 +Txk+1~ (4)

We limit the solution (3) by limiting its coefficients. Starting with the highest coefficient (at the top level) i = p,
we replace ¢¢ with

X

¢ = minmod(cf, D*, D). (5)
Here
sgn(a) min(|al, |b], |c|) if sgn(a) = sgn(b) = sgn(c
—— e L e e i) "
0 otherwise
The limiter is active if ¢ # ¢f. Formula (5) seeks to contain spurious growth in ¢, i = 1,2, ..., p, by compar-

ing them to and limiting them by suitable quantities D;* and D;*. Roughly speaking, ¢; corresponds to the ith
derivative of the solution, so it will be compared to the forward and backward differences of the (i — 1)st deriv-
ative, which are alternative approximations to the ith derivative.

A Taylor series expansion of the solution reveals that in the absence of discontinuities, ci=1,2,...,p,is
in fact an estimate of 0.u on cell k& up to a scaling factor:
cf = CAXBu(), L€ buxin]. (7)

Thus, limiting of ¢/ amounts to limiting the approximations of solution derivatives.

Our choice of the forward and backward differences in (5) can be motivated by the following close exam-
ination of the coefficients of the expansion and their relationship to derivatives. First, we compute the ith and
(i — 1)st derivatives of Uj with respect to x. Recall that the coefficient of the leading term a,x" of the Legendre
polynomial of order n with the chosen normalization is given by [1]

_ !
T ®
Combining (8) with the mapping (4) gives the following expressions for the indicated derivatives
aiflUk 2 i—1 2 i—1 ai*l P
== i — 3k =) = k

and
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odU 2\ .. 2\ &,
axik: <Ax> (2i — 1)k + (Ax> 5 > ek Pu(8). (10)

m>i

In (9), the terms corresponding to coefficients of order less than i — 1 in x are identically zero, and those of
order greater than / — 1 are collected in the sum. Expression (10) has a similar form. Computing the forward
difference of the 6;’1 U, and rearranging the terms gives

0 U 07U 2\ -3 ., 2\ o' &,
< o1 oxi! )/Ax— (Ax) B (¢l =) + (Ax) F Z E(Cm —¢,)Pn(S).  (11)

m>i—1

Formulas (10) and (11) are approximations of the same quantity d.u. Comparing the (2/ Ax)' order terms in
(10) and (11), and taking into account (7) reveals
k1 Lk
k_ Cic1t — G i+l
F= L4 O(AXT). 12
o =Syt o) (12)
A similar relation holds between ¢ and the backward difference of ¢! . In a special case when the exact solu-
tion of (2) belongs to the finite element space, i.e. is a polynomial of degree less than or equal to p, (12) is
simplified and there are no higher order terms.
We could have based the limiter for ¢f on (12), for example by setting D;* = (¢*] — ¢k |)/2(2i — 1) and
D7 = (cF |, — ¢f7])/2(2i — 1), but this choice is too diffusive. Instead, we try to find a limiter of the same gen-
eral form

& = minmod(cf, ai(c}} — ¢ y), (el — ¢7y)). (13)

Note that «; is a variable depending on the order of the coefficient. We propose the following range for «;

1

L <u<l 14
22i - > (14)

Choosing «; outside of this region resulted in either loss of accuracy or numerical instability. In the experi-
ments presented in Section 4, we used o; = 1, i.e. the mildest limiter possible.
We propose to use the limiter in the following way. Starting at the top level i = p, we replace ¢! with

& — minmod(ch, ! — |, cb | — k). (15)

If ¢& = ¢* we stop. Otherwise we limit ¢! |, continuing until i = 1 or stopping the first time ¢* = ¢*. Note that
the limiter (15) is equivalent to allowing the leading term of the ith derivative to be 2(2i — 1) times bigger than
the forward and backward differences of the (i — 1)st derivatives on the neighboring elements.

When p =1, the limiter (15) becomes the familiar minmod limiter of [5] that compares the slope on k to
twice the forward and backward differences of the solution averages.

Remark 1. It is important both to start limiting from the highest coefficient and to stop when the first
coefficient that does not need to be limited is encountered. This adaptive action of the limiter can be seen in
Example 4.1.1. Using the limiter as an indicator, i.e. either limiting all coefficients if at least one was limited, or
not limiting at all if the limiter did not reach the lowest coefficient, does not work nearly as well. The first
choice results in order reduction and the second in spurious oscillations in the solution. Limiting from the
lowest coefficients up results in flattening of smooth extrema and reduction of accuracy. The moment limiter
seems to identify and limit the exact amount of oscillations developed in the solution.

Remark 2. For nonlinear systems, the limiter must be applied to the characteristic variables. Applying the
limiter to the conserved variables leads to spurious oscillations near discontinuities even with a linear spatial
approximation [4]. The limiting is performed in the following way

(LCY), = minmod((LC),, (L(CE} = CF)), (L(CE, = C))), j=1,2,,N, (16)
where L is a matrix of left eigenvectors of the Jacobian of (2) on cell k evaluated using the Roe average [4],
C = (cfy,¢hy, .-, chy), and N is the number of equations in the system. The result is mapped back into the
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conserved variables space by multiplication with the matrix of right eigenvectors. In this notation, (LCf.‘) ;18
the ith coefficient of the expansion of the jth characteristic variable in the space of basis functions. Character-
istic variables must be limited independently from one another: we stop limiting variable j if (LC¥) ;= (LCf.‘ );
for some i, but might have to continue to limit other characteristic variables. Presumably the same could be
done for primitive variables, but we have not yet investigated this.

Remark 3. As a consequence of limiting of characteristic variables, some negative pressure values that are
produced by the scheme might not be corrected by the limiter. Should this occur, we limit the coefficients
corresponding to linear terms according to (5) and set higher order coefficients to zero. If this is not enough to
eliminate negative pressure values, all coefficients except for cf are set to zero.

3. Two-dimensional limiting

In this section we extend the moment limiter to tensor-product meshes in two space dimensions. This is less
straightforward than one might think, because the x and y directions are coupled in the expansion of the solu-
tion. We use both directions to limit each coefficient, and we adjust the constant used in the limiting as well.
The justification is outlined below.

We consider DG solutions of a two-dimensional scalar problem of the form (2) on a uniform rectangular
grid with grid spacing Ax and Ay. We map each grid cell to a computational cell [—1, 1] x [—1, 1] with a map of
the form (4) in both the x and y directions. The computational variables are now & and . We construct a ten-
sor-product basis using the Legendre polynomials. The basis functions are normalized so that ||P;P;||,, = 1 on
the computational cell. The solution on cell &, m in terms of this basis is given by

U= > YEEVEED wop 0, ). (17)

ij i
i=0,j=0 2

As in one space dimension, we seek to limit solution derivatives. First, we differentiate Uy, i times in x and j
times in y when i, j are not simultaneously equal to zero to get

CIEDRIED 6wy — ek + 87 S dmp@pn|

O Ui _ (i)i(i>j (18)
iyl \Ax) \Ay 2 ocon G,

We limit cf’jf" using forward and backward differences of lower derivatives of Uy ,,. Two derivatives can serve
this purpose: 6;6;_1U and Gi_la’vU . After some algebra similar to the one-dimensional case, we find

U (2 (2) VR DR -T) o, 0L

== = 2i — 1)IN(2j — 3k A kmp (2P,

ox! ayf'*‘ (Ax) <Ay) 2 ( ! ) ( J 3) ck/*l + 6516111;1 ll;v)jcu,u (é) (’7) )
j> 07 (19)

and

)

oy, 2\ 2V [WVR2i- D2+ 1) . ot &
N - = 2i =32 — DU — kmp (£)P,
e =(x) () 7 i T D g D TPOR

i>0. (20)

Computing the forward differences of 6;’1 G;U and o' 6;’1 U in the x and y directions, respectively, and com-
paring them to the leading term of (18) results in

k+1,m k,m

k.m i—-1,j i1 i+1 i+1
Gl =—1—=—"4 O(Ax"" Ay 2la
o] 2 /41.2 1 ( ) ( )
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and
CkAerl _ Ck,m
km ij—1 ij—1 i+1 AL+l
= ————— 4+ O(AXTAY"). 21b
P =t o ) (21b)
As in one space dimension, (21a) and (21b) are exact equalities if the solution actually belongs to the space
spanned by the basis. We use both to limit cf_‘;” but with different coefficients

~k, km+1 k, K, km—1 K+, K, k, k-1,
" /(CljriT - Ciﬂl)a O‘j(ciﬂl - ciﬁl )s O‘i(c:um - C[—ml,j)7 OCi(cij,j - Ciflljm))' (22)

ke,m
Ci,j C

= minmod( i O

For cg;” and ci‘(;”, i,j=1,2,...,p, the limiter (22) has only three terms. The coefficients «; and «; are defined by

using the same reasoning as the one-dimensional case. We do not allow cf-‘,’j'" to exceed 2(2i — 1) times the lower
derivative in the x direction and 2(2;j — 1) times the lower derivative in the y direction. This and (21) result in
the following choice of o

_ L, <yl (23)
Wanr—1 " T V2n+ 1

Note that the difference in the factors between the one- and two-dimensional cases are due to the difference in
normalization of the basis functions.

The least diffusive choice of «, the one corresponding to the right end of the interval (23), is used in all com-
putations presented in Section 4. As in the one-dimensional case, the limiter is applied adaptively starting with
the highest coefficient ¢, , and continuing to lower ones if necessary. The limiting is performed by applying (22)
to consecutively lower terms of (17) until a coefficient ¢;; or a pair of coefficients ¢;; and ¢;; are found that are
not changed by the limiter. For coefficients ¢;;, i # j, we require a symmetric pair ¢;; and c;; not be changed by
the limiter in order to assume that no further limiting is necessary. More specifically, the order of limiting is
the following. First, any coefficient with a subscript p is limited, and within those, they are limited from highest
to lowest. For example, the highest coefficient c,, is examined. If it does not need limiting, the procedure
stops. If it does, the pair of coefficients c,,_; and c,_; , is examined. If they do not need limiting, the procedure
stops, otherwise the pair ¢,,_, and ¢,_,, is examined. When all coefficients with a p are finished, those with at
least a p — 1 subscript that have not yet been examined go next. The following describes the ordering of ele-
ments for limiting from the highest to the lowest:

Cpps Cpp—t AN Cp_ip, Cppn ANd Cp_ap, ..., Cpo and co,

Cp—1p-1,Cp—1p-2 and Cp—2p—1,Cp—1p-3 and Cp3p—1y-+-3Cp—10 and Cop—1, (24>

C1,1,C10 and Co,1-

Detailed formulas illustrating the use of limiter (22) for a quadratic approximation are given in Appendix A.
4. Numerical examples

This section shows the behavior of the limiter on a variety of test problems. Examples with both smooth
solutions and discontinuous solutions, and in one and two space dimensions, are presented. The implementa-
tion of the limiter is straightforward.

4.1. One-dimensional examples
4.1.1. Linear advection

We consider the linear initial value problem

w+u =0 —-1<x<1,1>0,
u(x,0) = uy(x), (25)
u(x,—1) =u(x, 1),
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with
uo(x) = sin 7. (26)

The exact solution of this problem is smooth and does not require limiting. To measure the loss of accuracy
inflicted by the moment limiter, we solve the problem with and without the limiter and compare the results.
We present errors €; in the L' norm at 7 = 2 after one period on uniform meshes having 16, 32, 64, 128, and
256 elements in Table 1 (no limiter) and Table 2 (moment limiter) for p ranging from 1 to 4. Even on this
smooth example, the limiter decreases the accuracy quite a bit. This is expected, but it is no worse than a cor-
responding finite volume scheme, see for example [2]. Also note that the convergence rate is preserved. (In fact,
since the coarsest grid does so poorly the rate appears higher than expected, but would settle back down).
Next, we advect the initial profile further in time to ¢ = 100 using the minmod and moment limiters and plot
the solutions in Fig. 1 for p =4 on a 32 element mesh with 11 points per element. There is no visual change in
the shape of the solution obtained with the moment limiter while the minmod limiter transforms the sinusoidal
wave into a square pulse. The L' errors are 3.85e—07 and 2.49e—01, respectively. This indicates that the mo-
ment limiter might be especially beneficial for problems requiring long-time simulations.
Next, we solve (25) with the initial conditions [15]

%(G(xv ﬁvz - 5) + G(x, :B»Z + 5) + 4G(x7 ﬁvz))7 —-08<x< _0'67
1, —04<x<-02,
up(x) = ¢ 1 —]10(x — 0.1)], 0<x<0.2, (27a)
L(F(x,a,a — 0) + F(x,0,a + 0) + 4F (x,0,2)), 0.4 <x <0.6,
0 otherwise,
G(x, f,2) = e P, (27b)
Flx,2,0) = \/max(1 - 22(x — a)’,0), (27¢)
where a = 0.5,z = —0.7, 6 = 0.005, « =10, and f = 1%3 The initial profile consists of a combination of Gaus-

sians, a square pulse, a sharp triangle, and a combination of half-ellipses. We solve the problem on a 200 ele-
ment uniform mesh with p = 1,2,3,4 using the moment limiter. The solutions are plotted in Fig. 2 with 11
points per element. We observe that the solution extrema are better resolved with higher p. The rectangular
pulse is captured better as well. The action of the limiter on the solution is plotted beneath each plot. In this
figure, a dot corresponds to the highest coefficient not limited (one dot per element). For example, a dot at
“three’”” means that the third and lower coefficients were not limited on the element; only coefficients higher
than 3 would be limited. We observe that the limiter acts on the solution adaptively and does minimal limiting
in smooth regions. Almost all coefficients are limited in the regions of near constant state since higher coeffi-
cients are on the order of machine precision there.

Next, we plot the exact and numerical derivatives of the solution computed with p = 3 on the 200 element
mesh in Fig. 3. The numerical derivatives were computed and plotted locally on each element by differentiating
(3). At discontinuities, the “exact’ derivatives in Fig. 3 were plotted using one-sided differentiation. There is a
good agreement between the exact and computed derivatives for the Gaussian. In approximating the pulse

Table 1
L! errors ¢; and convergence rates r for the sine wave
N p=1 p=2 p=3 p=4
€1 r €1 r €] r €] r
16 2.18¢—02 - 3.15¢—04 - 6.67e—06 - 1.43e—07 —
32 5.42e—03 2.01 3.91e—05 3.01 4.12e—07 4.02 4.46e—09 5.01
64 1.35e—03 2.01 4.89¢e—06 3.00 2.56e—08 4.01 1.39e—10 5.00
128 3.37e—04 2.00 6.11e—-07 3.00 1.59¢—09 4.00 4.35¢—12 5.00
256 8.45¢—05 2.00 7.63¢—08 3.00 9.99¢e—11 4.00 1.36e—13 4.99

No limiter.
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Table 2
L' errors ¢; and convergence rates r for the sine wave
€] r €] r €] r €] r
16 1.22e—-01 - 1.95e—03 - 6.71e—05 - 1.92e—06 —
32 2.65¢—02 2.21 1.81e—04 3.43 2.95e—06 4.51 4.38¢—08 5.45
64 5.64¢—03 2.23 1.78e—05 3.35 1.35e—07 4.45 9.89¢—10 5.47
128 1.17e—03 2.27 1.74e—06 3.35 6.13e—09 4.46 2.20e—11 5.48
256 2.45e—04 2.25 1.79e—07 3.28 2.92e—-10 4.39 5.02e—13 5.45

Moment limiter.

exact ——
0.8+ 1 N

numerical
os] f /7 A\
0.5

0.4r 1

b,
e

7

021 1

02} ]
04} ]

RN 4

1 1 1 1 -1 L 1 1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

S
jaset i

Fig. 1. Linear advection (25) and (26) with p =4 on a 32 element uniform mesh; ¢ = 100. Left: the exact and numerical solutions are
indistinguishable with the moment limiter. Right: solid line — exact solution, plus signs — numerical solution.

(the second shape from the left), we see two delta-function-like shapes, then four spikes and then six. The lim-
iter does not cut the accuracy to first order, rather the numerical derivatives are a good approximation for the
delta function. We also note that the derivatives are not approximated monotonically. This is actually the case
even for linear approximation, as can be seen in Fig. 4.

4.1.2. Burgers equation
In this example we study how the moment limiter affects the total variation of the solution and its coeffi-
cients when solving the Burgers equation
u+ W?)2), =0, —1<x<1,t>0,

u(x, 0) :H—szinrcx’

u(—1,t) =u(l,1).

(28)

The solution of this problem forms a shock at = 2/7 that moves to the right. The evolution of the shock in
time is shown in Fig. 5, right. We solve the problem on a 32 element uniform mesh with p =1 and p =2 and
plot the total variation in means (TVM) and the real total variation (TV) of the computed solution in Fig. 6.
The real total variation is computed as a sum of the solution variation within each cell plus the solution jumps
between cells. The total variation in means is given by (1). The exact total variation remains constant until
t = 1 and monotonically decreases after that (Fig. 5, right). The minmod limiter (p = 1) results in a diminish-
ing TVM as expected. This can be seen in Fig. 5, left, as a flattened local maximum. The moment limiter
(p = 2) retains a near constant TVM until the shock forms. However, the TV with both p =1 and p = 2 starts
noticeably growing as the solution steepens into a shock. The growth in the TV is roughly 15% and 30% for
p =1and p =2, respectively. The oscillatory structure of the TV plot is a result of the solution profile moving
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Fig. 2. Solutions of linear advection problem (25), (27) at t = 8.0, N =200, p = 1,2, 3,4 from left to right and from top to bottom. Solid
line — exact solution, crosses — numerical solution. The moment limiter’s action is shown beneath each plot. A dot corresponds to the
highest coefficient not limited.
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Fig. 4. First derivative of the solution of (25), (27), N =400, p=1.

through the grid, because TV depends on the positions of solution peaks relative to the mesh. The period of
the oscillations is a/Ax, where « is the wave speed. Eleven peaks after t = 2/ in Fig. 6 correspond to 11 grid
cells through which the shock moved. A similar phenomenon is observed with the minmod limiter. The min-
mod enforces the TVD property by suppressing the upward movement in each period, which results in the
staircasing pattern in Fig. 6, left.
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Fig. 5. left: Solutions of the Burgers equation with p = 1 (solid line) and p = 2 (dashed line) on a 32 element mesh with the moment limiter,
t = 0.7. right: The exact solution of the Burgers equation at = 0.7, 1.0, 1.5,2.0.
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Fig. 6. Total variation (right) and total variation in means (left) as a function of time for the Burgers equation, p = 1 (solid line) and p =2
(dashed line).

Next, we solve (28) on the same mesh with p = 3, compute the following quantities:

TV,;l = Z |Cz/‘.|a = 172737 (29)
J

at every timestep, and plot them in Fig. 7 using a log scale. Recall that the ¢; are approximations to the solution
derivatives times a scaling factor involving Ax'. We notice that the scales remain clearly separated even after the
shock has formed. TV} is an approximation to the total variation, which decays with time. By analogy, 7'V and
TV, can be viewed as approximations of the total variation of the first and second derivatives. They start to
grow earlier and grow faster than TV, with the third coefficients growing faster than the second ones. This con-
firms our hypothesis that oscillations first appear in higher derivatives and then propagate into lower ones.

4.1.3. Blast waves
We consider the Euler equations u, + f(u) = 0 with

u=(p,pq,E)", f(u)=qu+(0,P,qP)", (30a)

and an equation of state

P=G-1(E-07). (30b)
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Fig. 7. TV,, i =0, 1,2, defined by (29) for the Burgers equation as a function of time, p = 3, logscale.

Here, p is density, ¢ velocity, P pressure, and E energy. We solve the problem subject to the initial conditions
(1,0,1000), 0<x<0.1,

(p,q9,P)(x,0) =< (1,0,0.01), 0.1 <x<0.9, (31)
(1,0,100), 09<x<1,

on the interval [0, 1]. Reflecting boundary conditions are imposed at the end points. The problem models inter-
action of two blast waves and was studied extensively in [23]. We solve the problem on 200 and 400 element
meshes with linear and quadratic approximation. The results at # = 0.38 are reported in Fig. 8. The numerical
solutions are compared with a solution obtained with p = 1 on a 3000 element mesh that is referred to as “ex-
act” in Fig. 8. Although the structure of the solution is quite complex, there are no smooth regions where the
advantages of a high-order scheme could be made apparent. The purpose of this example, thus, is to show that
a high-order DG with the moment limiter results in accurate, stable, overshoot-free solutions for this difficult
problem involving multiple interactions of strong shocks and rarefactions. Even for this case we observe 